k8s
  • Initial page
  • 序言
  • 前言
    • 发展历史
    • CNCF - 云原生计算基金会简介
    • Kubernetes与云原生应用的概念
  • 概念与原理
    • 基本概念总结
    • 开放接口
      • CRI - Container Runtime Interface
      • CNI - Container Network Interface
      • CSI - Container Storage Interface
    • 核心概念与原理
      • Kubernetes简介
      • Kubernetes架构与原理
      • 核心组件
      • 设计理念
      • 核心组件原理
        • etcd概念与原理
          • Etcd基于RAFT的一致性
          • Etcd v2 与 v3存储
        • kube-apiserver
        • kube-scheduler
        • kube-Controller Manager
        • Kubelet
        • kubectl常用命令
      • kubectl
      • kube-proxy
      • IPVS负载均衡
      • kube-dns
      • Federation-集群联邦
      • kubeadm
    • 资源对象与基本概念解析
    • 资源对象
      • Pod
        • Pod概述
        • Pod解析
        • Pod 的生命周期
        • 探针
        • Init 容器
        • Pause容器
        • Pod 安全策略
        • Pod hook
        • Pod Preset
        • pod其他设置
        • Pod中断与PDB
    • Kubernetes中的网络
      • 图解Kubernetes网络(一)
      • 图解Kubernetes网络(二)
      • 图解Kubernetes网络(三)
      • calico
      • flannel
    • 转发K8S后端服务的四种方式
    • 集群资源对象
      • Node
      • Namespace
      • Label
      • Annotation
      • Taint和Toleration(污点和容忍
      • 垃圾收集
      • Autoscaling
      • Horizontal Pod Autoscaling
        • Metrics-Server
        • Heapster
      • ReplicationController和ReplicaSet
    • 控制器资源对象
      • CronJob
      • Job
      • DaemonSet
      • Deployment
      • StatefulSet
    • 服务发现-资源对象
      • DNS原理讲解
      • Ingress 选型
      • Service
      • Ingress
    • 存储对象
      • ConfigMap
      • Volume
      • Persistent Volume(持久化卷)
      • StorageClass
      • 本地持久化存储
      • Secret
    • 策略对象
      • Resource Quota
      • SecurityContext
    • 身份对象
      • 认证
      • Service Account
      • RBAC——基于角色的访问控制
      • 准入控制
      • Network Policy
    • 资源调度
      • QoS(服务质量等级)
  • 插件扩展
    • Kubernetes的CI/CD
    • Dashboard
    • CoreDNS
    • 监控
      • 概述
      • 第1章 采集
        • Probes
        • Docker Stats
        • cAdvisor
        • Heapster
          • HPA
        • metrics-server
        • custom metrics自定义指标
        • kube-state-metrics
        • node-exporter
        • Prometheus
          • go 自定义metric
          • 本地存储
          • Prometheus概述
          • Prometheus基本架构
          • Prometheus部署方案
          • Prometheus的配置与服务发现
          • PromQL查询解析
          • Prometheus数据可视化
          • Prometheus存储机制
        • Sysdig
        • Untitled
      • 自定义监控
      • Custom-Metrics及Prometheus监控系统
      • grafana各种类型监控-实用
    • 日志
    • 存储
      • Kubernetes Ceph 工作原理详解
    • Metrics
    • GPU
    • Cluster AutoScaler
    • CI/CD
      • 基于DOCKER的CI工具—DRONE
      • DRONE安装指南
      • 如何使用DRONE
      • Drone
      • Jenkins
        • jenkins 集成 keycloak 认证
    • 50个免费的Kubernetes工具盘点
      • Kube集群部署工具
      • 监控工具
      • 测试工具
      • 安全工具
      • 实用的CLI工具
      • 开发工具
      • 无服务器/函数工具
      • 原生服务发现
      • 原生可视化与控制
    • Untitled
  • 领域应用
    • Istio
      • Helm安装
      • 安装并试用Istio service mesh
      • 示例应用部署
      • Bookinfo 应用-
      • 配置请求的路由规则
      • 故障注入
      • 流量转移
      • Istio流量管理实现机制深度解析
      • istio:监控能力介绍
      • Istio 04:Istio性能及扩展性介绍
      • Untitled
  • 实践
    • 大规模集群
    • 高可用
  • k8s运维排查
    • 常用命令
    • Kubernetes之YAML文件
      • yaml文件例子--pod
      • yaml文件例子--rc
    • Kubernetes运维
      • 集群管理
      • 集群与应用监控
      • 日志收集与管理
      • 常见问题定位
      • 权限管理RBAC
    • 排错概览
    • 集群排错
      • kubernetes集群管理常用命令一
    • Pod 排错
    • 网络排错
      • 容器内抓包定位网络问题
    • PV 排错
    • Windows 排错
    • 云平台排错
    • 集群安装脚本
    • 排错工具
    • 常见问题
      • k8s故障解决干货文档链接
      • 记一次Docker/Kubernetes上无法解释的连接超时原因探寻之旅
      • service没有负载均衡
      • kubernetes集群etcd空间配额2G的坑优化
    • K8S--100问
      • 解决 Docker 日志文件太大的问题
      • Kubernetes集群里容器之间的通讯方式
      • k8s 优化
      • lxcfs 在容器内显示容器的 CPU、内存状态
      • kubectl 创建 Pod流程
      • k8s网络-iptables
      • k8s底层网络原理
      • 网络排查
      • kubectl top 和 cadvisor metric ,docker state不一致的问题
      • 容器挂载数据卷的几种情况
      • 容器的终止流程
      • Kubernetes 中如何保证优雅地停止 Pod
      • K8S的apiVersion
      • 如何在Pod中执行宿主机上的命令
      • 创建 Pod 流程
      • k8s主要组件说明
      • 节点网络规划
      • Deployment管理方式
      • pod的分配方式
  • 深入浅出k8s
    • 说明
    • k8s发布策略介绍
    • oom kill原理讲解
    • Kubernetes 的架构设计与实现原理
  • 附录
    • CKA认证
    • 生态圈
    • 资讯快报
      • 2018态势回顾与2019年前景展望
      • Untitled
    • 学习资源
    • 参考文档
    • Kubernetes版本更新日志
      • Kubernetes 1.14 更新日志
      • Kubernetes 1.13 更新日志
      • Kubernetes1.12更新日志
      • Kubernetes1.10更新日志
      • Kubernetes1.11更新日志
  • 思维导图
    • k8s
    • DEVOPS
  • DEVOPS
    • 开源仓库-nexus
      • 一,nexus的安装
      • 二,使用nexus3配置docker私有仓库
      • 三,使用nexus3配置maven私有仓库
      • 四,nexus-3.14.0升级到3.15.2
      • 五,nexus3搭建golang私服
    • vpn
      • openvpn
    • Tcpdump 示例教程
    • Ipsec VPN-centos7使用strangwang搭建vpn
    • yum安装redis及常用指令
    • 数据库
      • mysql表操作
      • mysql 库常用操作及备份还原
      • MySQL 优化实施方案
    • NSQ
      • nsq问题解答
      • 选型
      • docker-compose部署 简单nsq 集群
    • 部署Redis集群
    • zookeeper安装及使用
    • Etcd
      • Untitled
      • Etcd配置
  • k8s系统完整部署
    • CentOS7.5 使用二进制程序部署Kubernetes1.12.2
    • 二进制的方式部署 K8S-1.16 高可用集群
    • CoreOS部署Kubernetes集群
    • EFK
      • 日志-kafka
      • logstash的部署、整合ELK+Filebeat
      • 应用日志收集
      • ES搭建
      • es集群部署
      • ElasticSearch技术原理
      • Elasticsearch操作
      • kibana
      • kibana简单使用
      • 非K8S主机部署Filebat
    • 镜像仓库-Harbor
    • Harbor 2.6.2安装
    • cURL 命令获取本机外网 IP
    • Shell 解析 JSON
    • 制作 gitbook 文档镜像,运行在 K8S 上
    • Kubernetes 之 MySQL 持久存储和故障转移
    • 如何删除etcd上的旧数据
    • Git 实战教程
  • 生活
    • 信合.阳光城
Powered by GitBook
On this page
  • 概述
  • 功能
  • 使用
  • 与metric-server的对比
  • 深入解析
  • 优化点和问题
  1. 插件扩展
  2. 监控
  3. 第1章 采集

kube-state-metrics

概述

已经有了cadvisor、heapster、metric-server,几乎容器运行的所有指标都能拿到,但是下面这种情况却无能为力:

  • 我调度了多少个replicas?现在可用的有几个?

  • 多少个Pod是running/stopped/terminated状态?

  • Pod重启了多少次?

  • 我有多少job在运行中

而这些则是kube-state-metrics提供的内容,它基于client-go开发,轮询Kubernetes API,并将Kubernetes的结构化信息转换为metrics。

功能

kube-state-metrics提供的指标,按照阶段分为三种类别:

  • 1.实验性质的:k8s api中alpha阶段的或者spec的字段。

  • 2.稳定版本的:k8s中不向后兼容的主要版本的更新

  • 3.被废弃的:已经不在维护的。

指标类别包括:

  • CronJob Metrics

  • DaemonSet Metrics

  • Deployment Metrics

  • Job Metrics

  • LimitRange Metrics

  • Node Metrics

  • PersistentVolume Metrics

  • PersistentVolumeClaim Metrics

  • Pod Metrics

  • Pod Disruption Budget Metrics

  • ReplicaSet Metrics

  • ReplicationController Metrics

  • ResourceQuota Metrics

  • Service Metrics

  • StatefulSet Metrics

  • Namespace Metrics

  • Horizontal Pod Autoscaler Metrics

  • Endpoint Metrics

  • Secret Metrics

  • ConfigMap Metrics

以pod为例:

  • kube_pod_info

  • kube_pod_owner

  • kube_pod_status_phase

  • kube_pod_status_ready

  • kube_pod_status_scheduled

  • kube_pod_container_status_waiting

  • kube_pod_container_status_terminated_reason

  • ...

使用

kube-state-metrics/
    ├── kube-state-metrics-cluster-role-binding.yaml
    ├── kube-state-metrics-cluster-role.yaml
    ├── kube-state-metrics-deployment.yaml
    ├── kube-state-metrics-role-binding.yaml
    ├── kube-state-metrics-role.yaml
    ├── kube-state-metrics-service-account.yaml
    ├── kube-state-metrics-service.yaml

主要镜像有: image: quay.io/coreos/kube-state-metrics:v1.5.0 image: k8s.gcr.io/addon-resizer:1.8.3(参考metric-server文章,用于扩缩容)

对于pod的资源限制,一般情况下:

200MiB memory 0.1 cores

超过100节点的集群:

2MiB memory per node 0.001 cores per node

kube-state-metrics做过一次性能优化,具体内容参考下文

部署成功后,prometheus的target会出现如下标志

因为kube-state-metrics-service.yaml中有prometheus.io/scrape: 'true'标识,因此会将metric暴露给prometheus,而Prometheus会在kubernetes-service-endpoints这个job下自动发现kube-state-metrics,并开始拉取metrics,无需其他配置。

使用kube-state-metrics后的常用场景有:

  • 存在执行失败的Job: kube_job_status_failed{job="kubernetes-service-endpoints",k8s_app="kube-state-metrics"}==1

  • 集群节点状态错误: kube_node_status_condition{condition="Ready",status!="true"}==1

  • 集群中存在启动失败的Pod:kube_pod_status_phase{phase=~"Failed|Unknown"}==1

  • 最近30分钟内有Pod容器重启: changes(kube_pod_container_status_restarts[30m])>0

配合报警可以更好地监控集群的运行

与metric-server的对比

  • metric-server(或heapster)是从api-server中获取cpu、内存使用率这种监控指标,并把他们发送给存储后端,如influxdb或云厂商,他当前的核心作用是:为HPA等组件提供决策指标支持。

  • kube-state-metrics关注于获取k8s各种资源的最新状态,如deployment或者daemonset,之所以没有把kube-state-metrics纳入到metric-server的能力中,是因为他们的关注点本质上是不一样的。metric-server仅仅是获取、格式化现有数据,写入特定的存储,实质上是一个监控系统。而kube-state-metrics是将k8s的运行状况在内存中做了个快照,并且获取新的指标,但他没有能力导出这些指标

  • 换个角度讲,kube-state-metrics本身是metric-server的一种数据来源,虽然现在没有这么做。

  • 另外,像Prometheus这种监控系统,并不会去用metric-server中的数据,他都是自己做指标收集、集成的(Prometheus包含了metric-server的能力),但Prometheus可以监控metric-server本身组件的监控状态并适时报警,这里的监控就可以通过kube-state-metrics来实现,如metric-serverpod的运行状态。

深入解析

kube-state-metrics本质上是不断轮询api-server,代码结构也很简单 主要代码目录

.
├── collectors
│   ├── builder.go
│   ├── collectors.go
│   ├── configmap.go
│   ......
│   ├── testutils.go
│   ├── testutils_test.go
│   └── utils.go
├── constant
│   └── resource_unit.go
├── metrics
│   ├── metrics.go
│   └── metrics_test.go
├── metrics_store
│   ├── metrics_store.go
│   └── metrics_store_test.go
├── options
│   ├── collector.go
│   ├── options.go
│   ├── options_test.go
│   ├── types.go
│   └── types_test.go
├── version
│   └── version.go
└── whiteblacklist
    ├── whiteblacklist.go
    └── whiteblacklist_test.go

所有类型:

var (
    DefaultNamespaces = NamespaceList{metav1.NamespaceAll}
    DefaultCollectors = CollectorSet{
        "daemonsets":               struct{}{},
        "deployments":              struct{}{},
        "limitranges":              struct{}{},
        "nodes":                    struct{}{},
        "pods":                     struct{}{},
        "poddisruptionbudgets":     struct{}{},
        "replicasets":              struct{}{},
        "replicationcontrollers":   struct{}{},
        "resourcequotas":           struct{}{},
        "services":                 struct{}{},
        "jobs":                     struct{}{},
        "cronjobs":                 struct{}{},
        "statefulsets":             struct{}{},
        "persistentvolumes":        struct{}{},
        "persistentvolumeclaims":   struct{}{},
        "namespaces":               struct{}{},
        "horizontalpodautoscalers": struct{}{},
        "endpoints":                struct{}{},
        "secrets":                  struct{}{},
        "configmaps":               struct{}{},
    }
)

构建对应的收集器

Family即一个类型的资源集合,如job下的kube_job_info、kube_job_created,都是一个FamilyGenerator实例

metrics.FamilyGenerator{
            Name: "kube_job_info",
            Type: metrics.MetricTypeGauge,
            Help: "Information about job.",
            GenerateFunc: wrapJobFunc(func(j *v1batch.Job) metrics.Family {
                return metrics.Family{&metrics.Metric{
                    Name:  "kube_job_info",
                    Value: 1,
                }}
            }),
        },
func (b *Builder) buildCronJobCollector() *Collector {
   // 过滤传入的白名单
    filteredMetricFamilies := filterMetricFamilies(b.whiteBlackList, cronJobMetricFamilies)
    composedMetricGenFuncs := composeMetricGenFuncs(filteredMetricFamilies)
  // 将参数写到header中
    familyHeaders := extractMetricFamilyHeaders(filteredMetricFamilies)
  // NewMetricsStore实现了client-go的cache.Store接口,实现本地缓存。
    store := metricsstore.NewMetricsStore(
        familyHeaders,
        composedMetricGenFuncs,
    )
  // 按namespace构建Reflector,监听变化
    reflectorPerNamespace(b.ctx, b.kubeClient, &batchv1beta1.CronJob{}, store, b.namespaces, createCronJobListWatch)
​
    return NewCollector(store)
}

性能优化:

kube-state-metrics在之前的版本中暴露出两个问题:

    1. /metrics接口响应慢(10-20s)

    1. 内存消耗太大,导致超出limit被杀掉

问题一的方案就是基于client-go的cache tool实现本地缓存,具体结构为:

var cache = map[uuid][]byte{}

问题二的的方案是:对于时间序列的字符串,是存在很多重复字符的(如namespace等前缀筛选),可以用指针或者结构化这些重复字符。

优化点和问题

  • 1.因为kube-state-metrics是监听资源的add、delete、update事件,那么在kube-state-metrics部署之前已经运行的资源,岂不是拿不到数据?kube-state-metric利用client-go可以初始化所有已经存在的资源对象,确保没有任何遗漏

  • 2.kube-state-metrics当前不会输出metadata信息(如help和description)

  • 3.缓存实现是基于golang的map,解决并发读问题当期是用了一个简单的互斥锁,应该可以解决问题,后续会考虑golang的sync.Map安全map。

  • 4.kube-state-metrics通过比较resource version来保证event的顺序

  • 5.kube-state-metrics并不保证包含所有资源

Previouscustom metrics自定义指标Nextnode-exporter

Last updated 6 years ago

​:

部署清单