k8s
  • Initial page
  • 序言
  • 前言
    • 发展历史
    • CNCF - 云原生计算基金会简介
    • Kubernetes与云原生应用的概念
  • 概念与原理
    • 基本概念总结
    • 开放接口
      • CRI - Container Runtime Interface
      • CNI - Container Network Interface
      • CSI - Container Storage Interface
    • 核心概念与原理
      • Kubernetes简介
      • Kubernetes架构与原理
      • 核心组件
      • 设计理念
      • 核心组件原理
        • etcd概念与原理
          • Etcd基于RAFT的一致性
          • Etcd v2 与 v3存储
        • kube-apiserver
        • kube-scheduler
        • kube-Controller Manager
        • Kubelet
        • kubectl常用命令
      • kubectl
      • kube-proxy
      • IPVS负载均衡
      • kube-dns
      • Federation-集群联邦
      • kubeadm
    • 资源对象与基本概念解析
    • 资源对象
      • Pod
        • Pod概述
        • Pod解析
        • Pod 的生命周期
        • 探针
        • Init 容器
        • Pause容器
        • Pod 安全策略
        • Pod hook
        • Pod Preset
        • pod其他设置
        • Pod中断与PDB
    • Kubernetes中的网络
      • 图解Kubernetes网络(一)
      • 图解Kubernetes网络(二)
      • 图解Kubernetes网络(三)
      • calico
      • flannel
    • 转发K8S后端服务的四种方式
    • 集群资源对象
      • Node
      • Namespace
      • Label
      • Annotation
      • Taint和Toleration(污点和容忍
      • 垃圾收集
      • Autoscaling
      • Horizontal Pod Autoscaling
        • Metrics-Server
        • Heapster
      • ReplicationController和ReplicaSet
    • 控制器资源对象
      • CronJob
      • Job
      • DaemonSet
      • Deployment
      • StatefulSet
    • 服务发现-资源对象
      • DNS原理讲解
      • Ingress 选型
      • Service
      • Ingress
    • 存储对象
      • ConfigMap
      • Volume
      • Persistent Volume(持久化卷)
      • StorageClass
      • 本地持久化存储
      • Secret
    • 策略对象
      • Resource Quota
      • SecurityContext
    • 身份对象
      • 认证
      • Service Account
      • RBAC——基于角色的访问控制
      • 准入控制
      • Network Policy
    • 资源调度
      • QoS(服务质量等级)
  • 插件扩展
    • Kubernetes的CI/CD
    • Dashboard
    • CoreDNS
    • 监控
      • 概述
      • 第1章 采集
        • Probes
        • Docker Stats
        • cAdvisor
        • Heapster
          • HPA
        • metrics-server
        • custom metrics自定义指标
        • kube-state-metrics
        • node-exporter
        • Prometheus
          • go 自定义metric
          • 本地存储
          • Prometheus概述
          • Prometheus基本架构
          • Prometheus部署方案
          • Prometheus的配置与服务发现
          • PromQL查询解析
          • Prometheus数据可视化
          • Prometheus存储机制
        • Sysdig
        • Untitled
      • 自定义监控
      • Custom-Metrics及Prometheus监控系统
      • grafana各种类型监控-实用
    • 日志
    • 存储
      • Kubernetes Ceph 工作原理详解
    • Metrics
    • GPU
    • Cluster AutoScaler
    • CI/CD
      • 基于DOCKER的CI工具—DRONE
      • DRONE安装指南
      • 如何使用DRONE
      • Drone
      • Jenkins
        • jenkins 集成 keycloak 认证
    • 50个免费的Kubernetes工具盘点
      • Kube集群部署工具
      • 监控工具
      • 测试工具
      • 安全工具
      • 实用的CLI工具
      • 开发工具
      • 无服务器/函数工具
      • 原生服务发现
      • 原生可视化与控制
    • Untitled
  • 领域应用
    • Istio
      • Helm安装
      • 安装并试用Istio service mesh
      • 示例应用部署
      • Bookinfo 应用-
      • 配置请求的路由规则
      • 故障注入
      • 流量转移
      • Istio流量管理实现机制深度解析
      • istio:监控能力介绍
      • Istio 04:Istio性能及扩展性介绍
      • Untitled
  • 实践
    • 大规模集群
    • 高可用
  • k8s运维排查
    • 常用命令
    • Kubernetes之YAML文件
      • yaml文件例子--pod
      • yaml文件例子--rc
    • Kubernetes运维
      • 集群管理
      • 集群与应用监控
      • 日志收集与管理
      • 常见问题定位
      • 权限管理RBAC
    • 排错概览
    • 集群排错
      • kubernetes集群管理常用命令一
    • Pod 排错
    • 网络排错
      • 容器内抓包定位网络问题
    • PV 排错
    • Windows 排错
    • 云平台排错
    • 集群安装脚本
    • 排错工具
    • 常见问题
      • k8s故障解决干货文档链接
      • 记一次Docker/Kubernetes上无法解释的连接超时原因探寻之旅
      • service没有负载均衡
      • kubernetes集群etcd空间配额2G的坑优化
    • K8S--100问
      • 解决 Docker 日志文件太大的问题
      • Kubernetes集群里容器之间的通讯方式
      • k8s 优化
      • lxcfs 在容器内显示容器的 CPU、内存状态
      • kubectl 创建 Pod流程
      • k8s网络-iptables
      • k8s底层网络原理
      • 网络排查
      • kubectl top 和 cadvisor metric ,docker state不一致的问题
      • 容器挂载数据卷的几种情况
      • 容器的终止流程
      • Kubernetes 中如何保证优雅地停止 Pod
      • K8S的apiVersion
      • 如何在Pod中执行宿主机上的命令
      • 创建 Pod 流程
      • k8s主要组件说明
      • 节点网络规划
      • Deployment管理方式
      • pod的分配方式
  • 深入浅出k8s
    • 说明
    • k8s发布策略介绍
    • oom kill原理讲解
    • Kubernetes 的架构设计与实现原理
  • 附录
    • CKA认证
    • 生态圈
    • 资讯快报
      • 2018态势回顾与2019年前景展望
      • Untitled
    • 学习资源
    • 参考文档
    • Kubernetes版本更新日志
      • Kubernetes 1.14 更新日志
      • Kubernetes 1.13 更新日志
      • Kubernetes1.12更新日志
      • Kubernetes1.10更新日志
      • Kubernetes1.11更新日志
  • 思维导图
    • k8s
    • DEVOPS
  • DEVOPS
    • 开源仓库-nexus
      • 一,nexus的安装
      • 二,使用nexus3配置docker私有仓库
      • 三,使用nexus3配置maven私有仓库
      • 四,nexus-3.14.0升级到3.15.2
      • 五,nexus3搭建golang私服
    • vpn
      • openvpn
    • Tcpdump 示例教程
    • Ipsec VPN-centos7使用strangwang搭建vpn
    • yum安装redis及常用指令
    • 数据库
      • mysql表操作
      • mysql 库常用操作及备份还原
      • MySQL 优化实施方案
    • NSQ
      • nsq问题解答
      • 选型
      • docker-compose部署 简单nsq 集群
    • 部署Redis集群
    • zookeeper安装及使用
    • Etcd
      • Untitled
      • Etcd配置
  • k8s系统完整部署
    • CentOS7.5 使用二进制程序部署Kubernetes1.12.2
    • 二进制的方式部署 K8S-1.16 高可用集群
    • CoreOS部署Kubernetes集群
    • EFK
      • 日志-kafka
      • logstash的部署、整合ELK+Filebeat
      • 应用日志收集
      • ES搭建
      • es集群部署
      • ElasticSearch技术原理
      • Elasticsearch操作
      • kibana
      • kibana简单使用
      • 非K8S主机部署Filebat
    • 镜像仓库-Harbor
    • Harbor 2.6.2安装
    • cURL 命令获取本机外网 IP
    • Shell 解析 JSON
    • 制作 gitbook 文档镜像,运行在 K8S 上
    • Kubernetes 之 MySQL 持久存储和故障转移
    • 如何删除etcd上的旧数据
    • Git 实战教程
  • 生活
    • 信合.阳光城
Powered by GitBook
On this page
  • GPU
  • 使用方法
  • 多种型号的 GPU
  • 使用 CUDA 库
  • 附录:CUDA 安装方法
  • 参考文档
  1. 插件扩展

GPU

GPU

Kubernetes 支持容器请求 GPU 资源(目前仅支持 NVIDIA GPU),在深度学习等场景中有大量应用。

使用方法

Kubernetes v1.8 及更新版本

从 Kubernetes v1.8 开始,GPU 开始以 DevicePlugin 的形式实现。在使用之前需要配置

  • kubelet/kube-apiserver/kube-controller-manager: --feature-gates="DevicePlugins=true"

  • 在所有的 Node 上安装 Nvidia 驱动,包括 NVIDIA Cuda Toolkit 和 cuDNN 等

  • Kubelet 配置使用 docker 容器引擎(默认就是 docker),其他容器引擎暂不支持该特性

NVIDIA 插件

NVIDIA 需要 nvidia-docker。

安装 nvidia-docker

# Install docker-ce
sudo apt-get install \
    apt-transport-https \
    ca-certificates \
    curl \
    software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \
   "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
   $(lsb_release -cs) \
   stable"
sudo apt-get update
sudo apt-get install docker-ce

# Add the package repositories
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
  sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64/nvidia-docker.list | \
  sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update

# Install nvidia-docker2 and reload the Docker daemon configuration
sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd

# Test nvidia-smi with the latest official CUDA image
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi

设置 Docker 默认运行时为 nvidia

# cat /etc/docker/daemon.json
{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    }
}

部署 NVDIA 设备插件

# For Kubernetes v1.8
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.8/nvidia-device-plugin.yml

# For Kubernetes v1.9
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.9/nvidia-device-plugin.yml

GCE/GKE GPU 插件

该插件不需要 nvidia-docker,并且也支持 CRI 容器运行时。

# Install NVIDIA drivers on Container-Optimized OS:
kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/k8s-1.9/daemonset.yaml

# Install NVIDIA drivers on Ubuntu (experimental):
kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/k8s-1.9/nvidia-driver-installer/ubuntu/daemonset.yaml

# Install the device plugin:
kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/release-1.9/cluster/addons/device-plugins/nvidia-gpu/daemonset.yaml

请求 nvidia.com/gpu 资源示例

apiVersion: v1
kind: Pod
metadata:
  name: cuda-vector-add
spec:
  restartPolicy: OnFailure
  containers:
    - name: cuda-vector-add
      # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
      image: "k8s.gcr.io/cuda-vector-add:v0.1"
      resources:
        limits:
          nvidia.com/gpu: 1 # requesting 1 GPU

Kubernetes v1.6 和 v1.7

alpha.kubernetes.io/nvidia-gpu 已在 v1.10 中删除,新版本请使用 nvidia.com/gpu。

在 Kubernetes v1.6 和 v1.7 中使用 GPU 需要预先配置

  • 在所有的 Node 上安装 Nvidia 驱动,包括 NVIDIA Cuda Toolkit 和 cuDNN 等

  • 在 apiserver 和 kubelet 上开启 --feature-gates="Accelerators=true"

  • Kubelet 配置使用 docker 容器引擎(默认就是 docker),其他容器引擎暂不支持该特性

使用资源名 alpha.kubernetes.io/nvidia-gpu 指定请求 GPU 的个数,如

apiVersion: v1
kind: Pod
metadata:
  name: tensorflow
spec:
  restartPolicy: Never
  containers:
  - image: gcr.io/tensorflow/tensorflow:latest-gpu
    name: gpu-container-1
    command: ["python"]
    env:
    - name: LD_LIBRARY_PATH
      value: /usr/lib/nvidia
    args:
    - -u
    - -c
    - from tensorflow.python.client import device_lib; print device_lib.list_local_devices()
    resources:
      limits:
        alpha.kubernetes.io/nvidia-gpu: 1 # requests one GPU
    volumeMounts:
    - mountPath: /usr/local/nvidia/bin
      name: bin
    - mountPath: /usr/lib/nvidia
      name: lib
    - mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so
      name: libcuda-so
    - mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so.1
      name: libcuda-so-1
    - mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so.375.66
      name: libcuda-so-375-66
  volumes:
    - name: bin
      hostPath:
        path: /usr/lib/nvidia-375/bin
    - name: lib
      hostPath:
        path: /usr/lib/nvidia-375
    - name: libcuda-so
      hostPath:
        path: /usr/lib/x86_64-linux-gnu/libcuda.so
    - name: libcuda-so-1
      hostPath:
        path: /usr/lib/x86_64-linux-gnu/libcuda.so.1
    - name: libcuda-so-375-66
      hostPath:
        path: /usr/lib/x86_64-linux-gnu/libcuda.so.375.66
$ kubectl create -f pod.yaml
pod "tensorflow" created

$ kubectl logs tensorflow
...
[name: "/cpu:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 9675741273569321173
, name: "/gpu:0"
device_type: "GPU"
memory_limit: 11332668621
locality {
  bus_id: 1
}
incarnation: 7807115828340118187
physical_device_desc: "device: 0, name: Tesla K80, pci bus id: 0000:00:04.0"
]

注意

  • GPU 资源必须在 resources.limits 中请求,resources.requests 中无效

  • 容器可以请求 1 个或多个 GPU,不能只请求一部分

  • 多个容器之间不能共享 GPU

  • 默认假设所有 Node 安装了相同型号的 GPU

多种型号的 GPU

如果集群 Node 中安装了多种型号的 GPU,则可以使用 Node Affinity 来调度 Pod 到指定 GPU 型号的 Node 上。

首先,在集群初始化时,需要给 Node 打上 GPU 型号的标签

# Label your nodes with the accelerator type they have.
kubectl label nodes <node-with-k80> accelerator=nvidia-tesla-k80
kubectl label nodes <node-with-p100> accelerator=nvidia-tesla-p100

然后,在创建 Pod 时设置 Node Affinity:

apiVersion: v1
kind: Pod
metadata:
  name: cuda-vector-add
spec:
  restartPolicy: OnFailure
  containers:
    - name: cuda-vector-add
      # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
      image: "k8s.gcr.io/cuda-vector-add:v0.1"
      resources:
        limits:
          nvidia.com/gpu: 1
  nodeSelector:
    accelerator: nvidia-tesla-p100 # or nvidia-tesla-k80 etc.

使用 CUDA 库

NVIDIA Cuda Toolkit 和 cuDNN 等需要预先安装在所有 Node 上。为了访问 /usr/lib/nvidia-375,需要将 CUDA 库以 hostPath volume 的形式传给容器:

apiVersion: batch/v1
kind: Job
metadata:
  name: nvidia-smi
  labels:
    name: nvidia-smi
spec:
  template:
    metadata:
      labels:
        name: nvidia-smi
    spec:
      containers:
      - name: nvidia-smi
        image: nvidia/cuda
        command: ["nvidia-smi"]
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            alpha.kubernetes.io/nvidia-gpu: 1
        volumeMounts:
        - mountPath: /usr/local/nvidia/bin
          name: bin
        - mountPath: /usr/lib/nvidia
          name: lib
      volumes:
        - name: bin
          hostPath:
            path: /usr/lib/nvidia-375/bin
        - name: lib
          hostPath:
            path: /usr/lib/nvidia-375
      restartPolicy: Never
$ kubectl create -f job.yaml
job "nvidia-smi" created

$ kubectl get job
NAME         DESIRED   SUCCESSFUL   AGE
nvidia-smi   1         1            14m

$ kubectl get pod -a
NAME               READY     STATUS      RESTARTS   AGE
nvidia-smi-kwd2m   0/1       Completed   0          14m

$ kubectl logs nvidia-smi-kwd2m
Fri Jun 16 19:49:53 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.66                 Driver Version: 375.66                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K80           Off  | 0000:00:04.0     Off |                    0 |
| N/A   74C    P0    80W / 149W |      0MiB / 11439MiB |    100%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

附录:CUDA 安装方法

安装 CUDA:

# Check for CUDA and try to install.
if ! dpkg-query -W cuda; then
  # The 16.04 installer works with 16.10.
  curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
  dpkg -i ./cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
  apt-get update
  apt-get install cuda -y
fi

安装 cuDNN:

tar zxvf cudnn-8.0-linux-x64-v5.1.tgz
ln -s /usr/local/cuda-8.0 /usr/local/cuda
sudo cp -P cuda/include/cudnn.h /usr/local/cuda/include
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

安装完成后,可以运行 nvidia-smi 查看 GPU 设备的状态

$ nvidia-smi
Fri Jun 16 19:33:35 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.66                 Driver Version: 375.66                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K80           Off  | 0000:00:04.0     Off |                    0 |
| N/A   74C    P0    80W / 149W |      0MiB / 11439MiB |    100%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

参考文档

PreviousMetricsNextCluster AutoScaler

Last updated 6 years ago

首先到网站 注册,并下载 cuDNN v5.1,然后运行命令安装

https://developer.nvidia.com/cudnn
NVIDIA/k8s-device-plugin
Schedule GPUs on Kubernetes
GoogleCloudPlatform/container-engine-accelerators